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ABSTRACT

A 6x6 macroscopic tensor is used to characterize
each layer of a multilayered structure that may have ar-
bitrary anisotropy and loss, as well as arbitrary number of
conductors at each interface. The calculated propagation
constant reflects the dispersion behavior of the transmis-
sion system. Numerical data are presented for both low
and high anisotropy dielectric layered structures.

1. INTRODUCTION

A layered structure with some layers possessing com-
plex anisotropy cannot be handled by a Transverse Res-
onance Approach {TRA) [1], or an alternate approach
which specializes anisotropy to particular cases like mag-
netic birefringence. The transverse resonance approach,
for example, is an acceptable method for isotropic layers
or very simple anisotropic layers with carefully chosen
principal axis orientation. A properly oriented uniaxial
crystal could be analyzed by an extension of the TRA [2].
A much more powerful technique is available 3] which de-
scribes the fields by 4-element field vectors and employs
a 4x4 matrix approach in the spectral domain. This
matrix method can allow simultaneous permittivity, per-
meability, and optical activity anisotropy. Therefore, the
displacement field vector can generally be described by
both a permittivity tensor and an optical activity tensor.
Likewise, the magnetic displacement vector can gener-
ally be described by a permeability tensor and an optical
activity tensor. Now for the multilayer anisotropic struc-
ture shown in Fig. 1, each layer is characterized by a
single 6x6 macroscopic tensor, which is both linear, and
constant under Fourier transformed operations.

The matrix approach determines the propagation
constant vy (= —jB for lossless case) and field vectors

by inverse Fourier transformation. Formulation of the
numerical implementation and the numerical results gen-
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erated for both low and high dielectric anisotropy layered
structures are presented to demonstrate the utility of the
technique.

2. FORMULATION OF NUMERICAL METHOD

For ease of calculation, the finite Fourier transform
is used to transform the fields over the spatial coordi-
nate parallel to the layer interfaces. This discrete Fourier
transform is physically reasonable and convenient be-
cause the fields are confined to the region(s) of the strip
lines and/or slots. The equation governing the fields in
each layer is given by [3]:

db

= jwR®
dy Jw

(1)
where R is a 4X4 matrix and its elements are functions of
w, 7, &, (propagation constant in z direction), permeabil-
ity and permittivity as well as optical activity tensors. ®
is the 4-element transformed field vector containing fields
tangential to the interface. Equation (1) is the state equa-
tion for the tangential field components. The solution to
(1) at any point y! within the layer is:
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Fig. 1 Anisotropic layered media inside a shielded

structure.
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®(y/) (2)
where ,
P(y) = et

(3)

A jwR and §(0) is a column vector at the interface
v 0, i.e. the bottom of the i-th layer. The 4x4 state
transition matrix P transforms the fields at y! = 0 into
the field value at y! inside the i-th layer.

I

Numerical determination of P is accomplished by
first finding the transverse eigenvalues ky; of A using
a standard library computer routine. Next using the
Cayley-Hamilton Theorem [4,5], P(y) is expanded and
computed as

P(y) = Z a; A (4)

In general, the eigenvalues ky, may be degenerate. The
coefficients a; which are function of y can be found by
solving the system of linear equation:

3
ky;y . Lt
eviv = g a; kyj

=0

7=1,.,4 (5)
Eq. (5) is valid when all the eigenvalues ky, are distinct.
For repeated (degenerate) eigenvalues, the derivatives of
Eqn. (5) are applied [4,5].

The impedence-type Green’s function is constructed
by a procedure delineated in [3] yielding

-?x(n) = C::‘Yll(q’n)jf(n) + é~12('yan) j:z(n) (60‘)
Ez(n) = GZI('st) Jz(n) + G22(7’n)JZ(n) (6b)

o~

where G;; is the Green’s function in the Fourier trans-
formed domain. Currents on the conducting lines are
expanded in terms of a complete basis set. For fast com-
putation trigonometric functions are used as the basis set.
The current expansions used for even modes, for example,
are

Ja(n) = % i a;cos(ans;)€ei(n) + b; sin(ans;)Eoi(n) (7)
j=11=1
Fam) =3 cicos(ans;)oi(n) + di sin(ans;)fie(n) (8)

F=11=1

while for odd modes

jz(n) = 3 ia; sin(ansj)éei(n) +b; cos(ansj)ém-(n) (9)
Jz(n) = %j i’: ¢; cos(a,87)7ei(n) + disin(ons;)70:(n)(10)

where n,; = n,/2, (n,—1)/2 for even and odd number of
strips n, respectively and n;, n; are the number of basis
functions for J, and J,. Here the spacing factor s; is
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the distance from the origin to the center of the j-th strip
and oy (2n — 1)7/2b, nw /b for even and odd modes,
respectively. Ee, Eo fle, flo are single microstrip even and
odd basis functions of J, and J, respectively [10]. Using
(7), Parseval’s theorem, and a Galerkin-like approach, a
determinental equation for the propagation constant can
be written based on the fact that the current expansion
coefficients are not a trivial null set.

3. NUMERICAL RESULTS

Numerical results are presented for single and cou-
pled microstrip line structures which employ anisotropic
sapphire substrates. These results demonstrate the ma-
trix technique and are compared to earlier results in the
literature. Since sapphire has only a moderate degree of
anisotropy (about 21 percent), data is also gathered on
a substrate material which has much higher anisotropy
(about 40.4 percent), pyrolytic boron nitride (PBN).
PBN originally stimulated interest because it had rea-
sonable characteristic line impedance [6] for integrated
circuit applications and might enable even and odd mode
phase velocity differences to be reduced in coupled line
structures [6-8]. Single and coupled line structures us-
ing PBN were studied in terms of material properties,
predicted electrical behavior and measured performance
[8].

Convergence behavior has been tested and is demon-
strated in Fig. 2 by showing the variation of 8 = B/ko
versus spectral number n. It is seen that 70 terms is
reasonable for accurate solution and fast computation.
Table 1 gives 8 at three frequencies (for the parameters
given in Fig. 4), for varying basis function number on
each strip and shows that agreement between the 3 val-
ues is at the 4-th digit, leading us to use only the n,
nz = (1,1) for efficient computation.

For single microstrip lines over sapphire, Fig. 3
shows the geometry and J versus frequency. Agreement
between our results and [9] having a bilateral open struc-
ture for 2w/h = 1,2,4 cases is within 0.5% when our side
wall width is ten times the substrate thickness. The pa-
rameters employed were €;; = €z = 9.4, €y = 11.6,
and substrate thickness 0.5 mm. Coupled microstrip
over sapphire data is shown in Fig. 4. The even and
odd mode dispersion curves are provided and agreement
is better than 1% with [2]. The parameters used were
€rz €2z = 94, ¢,y = 116, and 2w = 1.5 mm,
2w; = 1.5 mm, substrate thickness by = 1.5 mm, hy =
3 mm, and 2b = 8.5 mm.

PBN dispersion curves for coupled microstrip for
even and odd modes up to 20 GHz are shown in Fig.
5 using the same geometric parameters as in Fig. 4 but
here e, = 5.12, and €,, = 3.40. Notice that the first
higher order mode is even.



Table (1a) Odd Modes

(nz,nz)
F(GH:) [ (L) 12) 8] %)
2 2.5177 2.5176 2.5179 2.5176
10 2.6946 2.6947 2.6947 2.6946
20 2.9927 2.9921 2.9928 2.9921
Table (1b) Even Modes
B for different (nz,n,)
F(CH) | (L) 12) @) 22
2 2.6884 2.6883 2.6886 2.6882
10 3.0412 3.0408 3.0412 3.0406
20 3.2046 3.2031 3.2047 3.2031
3
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4. CONCLUSION

Numerical implementation of a general 4x4 matrix

technique to find the propagation characteristics of highly
anisotropic layered media is demonestrated. The accu-
racy of the implementation has been checked and found
to agree with previous calculations for some special cases.
New results for a highly anisotropic layered structure are
presented.
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