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ABSTRACT

A 6x6 macroscopic tensor is used to characterize

each layer of a multilayered structure that may have ar-

bitrary anisotropy and loss, as well as arbitrary number of

conductors at each interface. The calculated propagation

constant reflects the dispersion behavior of the transmis-

sion system. Numerical data are presented for both low

and high anisotropy dielectric layered structures.

1. INTRODUCTION

A layered structure with some layers possessing com-

plex anisotropy cannot be handled by a Transverse Res-

onance Approach (TRA) [1], or an alternate approach

which specializes anisotropy to particular cases like mag-

netic birefringence. The transverse resonance approach,

for example, is an acceptable method for isotropic layers

or very simple anisotropic layers with carefully chosen

principal axis orientation. A properly oriented uniaxial

crystal could be analyzed by an extension of the TRA [2].

A much more powerful technique is available [3] which de-

scribes the fields by 4-elemt?nt field vectors and employs

a 4x 4 mat rix approach in the spectral domain. Thk

matrix method can allow simultaneous permittivity, per-

meability, and optical activity anisotropy. Therefore, the

displacement field vector can generally be described by

both a permittivity tensor and an optical activity tensor.

Likewise, the magnetic dkplacement vector can gener-

ally be described by a permeability tensor and an optical

activity tensor. Now for the multilayer anisotropic struc-

ture shown in Fig. 1, each layer is characterized by a

single 6x 6 macroscopic tensor, which is both linear, and

constant under Fourier transformed operations.

The matrix approach determines the propagation

constant ‘y (= –j~ for lossless case) and field vectors

by inverse Fourier transformation. Formulation of the

numerical implementation and the numerical results gen-

erated for both low and high dielectric anisotropy layered

structures are presented to demonstrate the utility of the

technique.

2. FORMULATION OF NUMERICAL METHOD

For ease of calculation, the finite Fourier transform

is used to transform the fields over the spatial coordi-

nate parallel to the layer interfaces. This discrete Fourier

transform is physically reasonable and convenient be-

cause the fields are confined to the region(s) of the strip

lines and/or slots. The equation governing the fields in

each layer is given by [3]:

d6
— = jwR6
dy

(1)

where R is a 4 x 4 matrix and its elements are functions of

U, T, % (propagation constant in z direct ion), permeabil-
ity and permittivity as well as optical activity tensors. &

is the 4-element transformed field vector containing fields

tangential to the interface. Equation (1) is the state equa-

tion for the tangential field components. The solution to

(1) at any point y: within the layer is:
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Fig. 1 Anisotropic layered media inside a shielded

Qt,ructure.
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!i(y:) = F’(y:) i(o)

where

P(U;) = #Y:

A = jwR and d(0) is a column vector

(2)

(3)

at the interface

Y[ = 0, i.e. the biitom of the i-th layer. The 4X4 state
transition matrix P transforms the fields at y: = O into

the field value at y{ inside the i-th layer.

Numerical determination of P is accomplished by

first finding the transverse eigenvalues Icyj of A using

a standard library computer routine. Next using the

Cayley-Hamilton Theorem [4,5], P(y) is expanded and

computed as
3

P(y) = ~ ai Ai (4)

In general, the eigenvalues k~j may be degenerate. The

coefficients ai which are function of y can be found by

solving the system of linear equation:

i= O

Eq. (5) is valid when all the eigenvalues kY, are distinct.

For repeated (degenerate) eigenvalues, the derivatives of

Eqn. (5) are applied [4,5].

The impedence-type Green’s function is constructed

by a procedure delineated in [3] yielding

-%(n)= dIl(q,n)~.(n) + dIZ(7,n) .f.(rt) (fh)

J%(n) = ~21 (7, n) .fz(n) + ~22(7, ~)~.(?t) (f5~)

.
where Gij is the Green’s function in the Fourier trans-

formed domain. Currents on the conducting lines are

expanded in terms of a complete basis set. For fast com-

put ation trigonometric functions are used as the baais set.

The current expansions used for even modes, for example,

are

while for odd modes

n.. n=

~z(n)= ~ ~ (ti sin(~n~j)~.i(n) + bi Cos(%sj)~oi(~)(9)
j=l i=l

~.e ~.

j..(n) = ~ ~ Ci COS(flnSj)fi.i(~) + di Sh(CtnSj)fiOi(? L)(lo)

j=l i=l

where naa = na/2, (ne —1) /2 for even and odd number of

strips na respectively and n=, n= are the number of basis

functions for ~z and ~=. Here the spacing factor sj is
.

the distance from the origrn to the center of the j-th strip

and an = (2n – l)n/2b, nn/b for even and odd modes,

respectively. &, ~0 ~e, ijO are single microstrip even and

odd basis functions of ~z and ~=, respectively [10]. Using

(7), Parseval’s theorem, and a Galerkin-like approach, a

determinental equation for the propagation constant can

be written based on the fact that the current expansion

coefficients are not a trivial null set.

3. NUMERICAL RESULTS

Numerical results are presented for single and cou-

pled microstrip line structures which employ anisotropic

sapphire substrates. These results demonstrate e the ma-

trix technique and are compared to earlier results in the

literature. Since sapphire has only a moderate degree of

an isotropy (about 21 percent), data is also gathered on

a substrate material which has much higher anisotropy

(about 40.4 percent), pyrolytic boron nitride (PBN).

PBN originally stimulated interest because it had rea-

sonable characteristic line impedance [6] for integrated

circuit applications and might enable even and odd mode

phase velocity differences to be reduced in coupled line

structures [6-8]. Single and coupled line structures us-

ing PBN were studied in terms of material properties,

predicted electrical behavior and measured performance

[8].

Convergence behavior has been tested and is demon-

strated in Fig. 2 by showing the variation of ~ = ~/k.

versus spectral number n. It is seen that 70 terms is
reasonable for accurate solution and fast computation.

Table 1 gives @ at three frequencies (for the parameters

given in Fig. 4), for varying baais function number on

each strip and shows that agreement between the ~ val-

ues is at the 4-th digit, leading us to use only the nz,

n= = (1, 1) for efficient comput at ion.

For single microstrip lines over sapphire, Fig. 3

shows the geometry and ~ versus frequency. Agreement

between our results and [9] having a bilateral open struc-

ture for 2w/h = 1,2,4 cases is within 0.5% when our side

wall width is ten times the substrate thickness. The pa-

rameters employed were E=z = c== = 9.4, CYV = 11.6,

and substrate thickness 0.5 mm. Coupled microstrip

over sapphire data is shown in Fig. 4. The even and

odd mode dispersion curves are provided and agreement

is better than 1% with [2]. The parameters used were

6== = Ezz = 9.4, Cvy = 11.6, and 2W = 1.5 mm,

2WI = 1.5 mm, substrate thickness hl = 1.5 mm, h2 =

3 mm, and 2b = 8.5 mm.

PBN dispersion curves for coupled microstrip for

even and odd modes up to 20 GHz are shown in Fig.

5 using the same geometric parameters as in Fig. 4 but

here E.. ‘= 5.12, and Cyv = 3.40. Notice that the first

higher order mode is even.
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Table (la) Odd Modes

(n=,n=)
F(GHz) (1,1) (1,2) (2,1) (2,2)

2 2.5177 2.5176 2.5179 2.5176

10 2.6946 2.6947 2.6947 2.6946

20 2.9927 2.9921 2.9928 2.9921

Table (lb) Even Modes

/3 for different (n.,nz)

F(GHz) \ (1,1) (1,2) (2,1) (2,2)

2 2.6884 2.6883 2.6886 2.6882
1 ! !

10 3.0412 3.0408 3.0412 3.0406

20 3.2046 3.2031 3.2047 3.2031
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Fig. 4. Dispersion characteristics (~ – w)

for coupled microstrip lines over saphire substrate.

hl = 1.5mrn, hz = 3xr2m, and 26 = 8.5mm.
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for single microstrip strip line over saphire substrate.

hl = 0.5mm, h2 = 4.5mm.
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Fig. 5. Dispersion characteristics (~ – u)

for coupled microstrip lines over PBN substrate.

hl = 1.5rnm, hz = 3rnm, and 2b = 8.5mm.
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4. CONCLUSION

Numerical implementation of a general 4x 4 matrix

technique to find the propagation characteristics of highly

anisotropic layered media is demonestrated. The accu-

racy of the implementation haa been checked and found

to agree with previous calculations for some special cases.

New results for a highly anisotropic layered structure are

presented.

REFERENCES

[1] T. Itoh, “Spectral-Domain Immitance Approach for

Dispersion Characteristics of Generalized Printed

Transmission Lines: IEEE i%ans. Microwave The-

ory Tech., Vol. MTT-28, pp. 733-736, July 1980.

[z] T. Kitazawa and Y. Hayashi, “Coupled Slots on

Anisotropic Sapphire Substrates? IEEE Trans. Mi-

crowave Theory Tech., Vol. MTT-29, pp. 1035-1040,

Oct. 1981.

[3] C. M. Krowne, “Fourier Transformed Matrix Methodl

of Finding Propagation Characteristics of Complex

Anisotropic Layered Media”, IEEE Trans. Mi-

crowave Theor~ Tech., Vol. MTT-32, pp. 1617-1625,

Dec. 1984.

[4] T. E. Fortmann and K. L. Hitz, An Introduction to

L{near Control S~stems, New York: Marcel Dekker,

Inc. 1977.

[5] N. Balabanian and T. A. Bickart, Electrical Network

Theor~, New York: Wiley, 1969.

[6] C. M. Krowne, “Microstrip Transmission Lines on

Pyrolytic Boron Nitride,” Electronics Lett., VO1. W

pp. 642-643, NOV. 1976.

[7] N. G. Alexopoulos and C. M. Krowne, “Characteris-

tics of Single and Coupled M1crostrip on Anisotropic

Substrates? IEEE Trans. Microwave Theory Tech.,

Vol. MTT-26, pp. 387-393, June 1978.

[8] C. M. Krowne and T. E. Washburn, “Pyrolitic Boron

Nitride as a Mlcrostrip Substrate Material,” IEEE

Electrical Insulation, Vol. EI-14, pp. 111-116, Apr.

1979.

[9] A.-M. A. E1-Sherbiny, “Hybrid Mode Analysis of’

Mlcrostrip Lines on Anisotropic Substrates,” IEEE

trans. Microwave Theory Tech., Vol. MTT-29, pp.

1261-1265, Dec. 1981.

[lti] C. M. Krowne, “Slow Wave Propagation in Gener-

alized Cylindrical Waveguides Loaded With a Semi-

conductor”, Int. J. Electronics, Vol. 58, pp. 249-

269, February 1985.

314


